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ABSTRACT 

 

Nitrous oxide emission has been paid more attention in the past few years due to its 

significant greenhouse effect. Nitrous oxide is a powerful greenhouse gas and its 

concentration in the atmosphere kept climbing at a constant rate. Nitrous oxide 

emission from wastewater treatment plant is considered as a major source of 

anthropogenic input. Conventional nutrient removal processes such as nitrification and 

denitrification produce nitrous oxide as intermediate or side-product. New treatment 

technology-Anammox is a promising process for nitrogen removal due to its low energy 

consumption and high removal efficiency. While being able to significantly decrease 

carbon dioxide emission, its potential of eliminating nitrous oxide emission has not 

been studied carefully. In the study, an UASB Anammox reactor was built to investigate 

nitrous oxide emission source from the reactor. Shock-loading and dissolved oxygen 

level could affect nitrous oxide concentration in the off-gas. Enrichment of biomass 

under strict dissolved oxygen control significantly brought nitrous oxide production 

down from 400 ppm to 5 ppm. With evidence from fluorescence in situ hybridization 

lab, nitrifier denitrification could be the source of nitrous oxide emission. In the end of 

study, the average emission of nitrous oxide was only 0.07 % of recovered nitrogen.



www.manaraa.com

	   1	  

CHAPTER 1.  INTRODUCTION 

 

1.1 Background information 

Nutrient removal in wastewater before discharging to natural stream has been paid 

more attention in the past few decades.  Discharging excess nutrient produced from 

human activity brings significant negative impacts, such as eutrophication in lakes, 

streams, rivers, and coastal areas. In wastewater, ammonia is a major nutrient that 

needs to be removed before effluent discharge.  

Conventional biological nutrient removal (BNR) process usually consists of two steps, 

nitrification and denitrification.  Nitrification is an ammonia oxidation process where 

ammonia is oxidized to nitrite and nitrate by a group of chemoautotrophic bacteria 

under aerobic condition. During this process, large amount of oxygen (air) is required to 

be introduced to the system by intensive mechanical aeration, which alone consumes a 

large amount of energy, accounting for 50-60% of the electricity usage by the facility. In 

United States, nearly 4% of the nation’s electricity use goes towards moving (80%) and 

treating water/wastewater (EPRI, 2002). Nitrification is then followed by denitrification 

process where nitrate and nitrite get reduced to nitrogen gas by a large group of bacteria 

that uses nitrite or nitrate as alternative electron acceptors under anoxic condition.  In 

order to achieve complete denitrification, external organic carbon (e.g., methanol) 

addition is commonly practiced due to low BOD/TKN ratio in most. Both nitrification 

and denitrification process can be costly because of intensive mechanical aeration and 

external carbon addition. Excessive sludge production also increases operation cost.   
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1.2 Greenhouse gas emission from wastewater treatment 

Since greenhouse gas emissions are associated with conventional BNR process, nitrous 

oxide emission has been paid attention in the past few years due to its increasing role in 

global warming. Nitrous oxide (N2O), a strong greenhouse gas, possesses 300 fold global 

warming potential compared to carbon dioxide (CO2) based on the 100-year global 

warming potential (IPCC 2007). It also has long lifetime of approximately 120 years 

(Solomon 2007). In some treatment plants, nitrous oxide emission can reach up to 80% 

of the operational CO2 footprint (Desloover 2012).  

Preindustrial value of tropospheric nitrous oxide concentration was about 270 ppb.  In 

2007, this value has increased to about 314 ppb, indicating 0.2-0.3% increases per year 

(Solomon 2007). According to study provided by the United States Environmental 

Protection Agency (USEPA), the US nitrous oxide emissions from human sewage 

treatment in 1990 were estimated at 3.7 TgCO2 (teragrams of CO2) Equivalents. In 2010, 

it has increased by over 30%, reached to 5.0 TgCO2 Equivalents (USEPA 2010).  Data 

released from Intergovernmental Panel on Climate Change (IPCC) indicates that global 

anthropogenic nitrous oxide emission reached 17.7 Tg N year-1 in 2004, accounting 7.9% 

of global anthropogenic GHG emissions (IPCC 2007).  
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Fig.1 Global greenhouse gas emissions by gas (IPCC 2007) 

 

According to 2010 NOAA (National Oceanic and Atmospheric Administration) Annual 

Greenhouse Gas Index (AGGI), of the five long-lived greenhouse gases (Fig. 1) that 

contribute 96% to radiative climate forcing, CO2 and N2O are the only ones that 

continue to increase at a regular rate (National Oceanic and Atmospheric 

Administration 2010). 
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Fig. 2 Global average abundances of the major, well-mixed, long-lived greenhouse gases, 

including carbon dioxide, methane, nitrous oxide, CFC-12 and CFC-11 (National Oceanic 

and Atmospheric Administration 2010) 

 

Since nitrous oxide has 300 fold global warming potential compared to carbon dioxide 

(CO2) based on the 100-year global warming potential, the 24 ppb increase of N2O 

concentration in the atmosphere from 1978 to 2010 is equivalent to about 7.2 ppm of 

CO2 increase in the atmosphere, accounting 13.3% of global warming effect caused by 

the increase of CO2. Therefore, N2O emission is an important player in the global 

warming, and proper control of N2O emission is necessary.  
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1.3 Anammox – an effective nutrient removal process with minimum 

environmental impact 

Recently, a novel nitrogen removal process named Anaerobic Ammonium Oxidation 

(Anammox) has been put into practice to treat ammonium-rich wastewater.  Anammox 

microorganisms create a shortcut in the nitrogen cycle to remove nitrogen in the 

wastewater.  Instead of going through nitrification and denitrification, ammonium can 

be directly oxidized to nitrogen gas with the presence of nitrite as electron acceptor.  

Thanks to this new technology, intensive aeration and external organic carbon 

(methanol) addition in conventional BNR process can be eliminated. This process only 

requires the conversion of 50% of the ammonium to nitrite resulting in the reduced 

need for aeration, thus saving energy. Energy consumption can be reduced by 60%, 

resulting in significant savings in operation costs (Abma 2007). Also, Anammox is able 

to reduce carbon dioxide emissions by up to 90% compared to conventional 

nitrification/denitrification processes. It also occupies up to 50% less space and reduces 

aeration energy by up to 60% (Jettena 2001). 

Since Anammox bypassed nitrification and denitrification route, we can expect 

significant less N2O emission compared to conventional BNR process. In order to 

investigate possible elimination of nitrous oxide production from Anammox process, an 

UASB Anammox reactor was developed and cultivated to handle high nitrogen load.  In 

the end of study nitrogen loading rate (NLR) was up to of 0.6 kg-N/d/m3.  Nitrous oxide 

emission was monitored along with adjustment of operating condition. Fluorescence in 

situ hybridization (FISH), a cytogenetic technique was used to determine 

microorganism composition in the Anammox granule.   
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CHAPTER 2.  LITERATURE REVIEW 

 

Nutrient removal of wastewater usually consists of nitrification process followed by 

denitrification process, which is the most common BNR process. Newer BNR process 

such as Sharon-Anammox has been put into practice in several places in the world, such 

as two full-scale plants in the Netherlands. Nitrification is the process by which 

ammonium (NH4+-N) is oxidized first to nitrite (NO2--N) by ammonium oxidizing 

bacteria (AOB), and then to nitrate (NO3--N) by nitrite oxidizing bacteria (NOB).  

Denitrification is the process by which nitrate (NO3--N) or nitrite (NO2--N) get reduced 

to dinitrogen gas (N2) through series intermediate nitrogen oxide products such as NO 

and N2O.  Sharon process (aka. nitritation) use temperature (35˚C) and alkalinity as 

selection pressure for enrichment of AOB and elimination of NOB in order to achieve 

partial nitrification. In this process, 50% of ammonium in the wastewater gets oxidized 

to nitrite and no further oxidation will occur. Sharon process is then followed by 

Anammox process where certain groups of bacteria convert nitrite and the remaining 50% 

of ammonium to nitrogen gas. This sustainable process has been put in a lot of efforts 

worldwide by industry leaders and researchers due to its significant potential to achieve 

high nutrient removal capability and energy saving.   

Nitrous oxide emission can be detected during nitrogen removal at WWTPs.  Ammonia-

oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and denitrifying 

microorganisms are responsible for N2O emission (Kampschreur 2009). Various 

operational parameters such as dissolved oxygen (DO) concentration, pH, nitrite 
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concentration in both nitrification and denitrification stage and carbon availability in 

denitrification stage affect N2O turnover (Okabea 2011). Anammox’s environmental 

impact, such as nitrous oxide emission, on the other hand, has only been probed by a 

few numbers of researchers. Due to many advantages of Anammox process over 

traditional BNR process, especially when it comes to environmental impact, nitrous 

oxide emission needs to be studied further.  From this study, we can obtain a more 

complete picture of the next-generation BNR process. 

 

2.1 The complete nitrogen cycle  

The nitrogen cycle was generally believed to be complete when denitrification and 

nitrification process was confirmed in 1882 and 1890, respectively (Strous 2004). 

However in 1995, Mulder et al., started up a 23 L capacity fluidized bed reactor for 

treating bakery yeast wastewater effluent in the Netherland, and found that nitrate and 

ammonium disappeared at the same time in the reactor (Mulder 1995). Since 

nitrification and denitrification could not destruct ammonium in anoxic condition 

except assimilation, this finding interested researchers to do an in-depth study.  

An article published by Broda et al. predicted that there are two lithographs missing in 

the nature. One of them was reported to utilize ammonium as electron donor and nitrite 

as electron acceptor to form nitrogen gas (Broda 1977). The difference here is that 

whether nitrite or nitrate was electron acceptor for the reaction. Later on, Graaf et al. 

successfully demonstrated the anaerobic ammonium oxidation using nitrite as electron 

acceptor not nitrate by using a fluidized bed reactor and introducing 15NH4+ and 14NO2- 
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as tracers (van de Graff 1995). Mulder et al.’s study was later proved nitrate was first 

reduced to nitrite and react with ammonium to proceed with Anammox process.  Based 

on these discoveries, the nitrogen cycle was revised as shown in Fig. 3.  

 

Fig. 3 Complete nitrogen cycle (PAQUES 2011) 

Based on mass balance, Stous et al. formulated a complete metabolic equation for 

Anammox reaction (van de Graff 1995). CH2O0.5N0.15 was found to be the protein 

content and elemental composition. The stoichiometry of Anammox is illustrated in eq. 

(1). 

NH4+ + 1.32 NO2- + 0.066 HCO3- + 0.13H+ è 1.02 N2 + 0.256 NO3-   

        + 0.066 CH2O0.5N0.15 + 2.03 H2O              (1) 
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From the stoichiometry of Anammox, we can see that the biomass yield is very low, 

suggesting long cultivation/start up time and low excess sludge production. Second, the 

reaction use inorganic carbon source, meaning that this process absorbs carbon instead 

of producing carbon dioxide. Third, nitrite is not only electron accepter but also donor. 

Part of nitrogen in nitrite gets oxidized to nitrate to provide energy for biomass 

assimilation.  

 

2.2 Nitrous oxide production from AOB organism  

Complete nitrification involves Ammonia oxidizer (AOB) and nitrite oxidizer (NOB) 

(Bock 1986). AOB belong to the genera Nitrosomonas, Nitrosococcus, Nitrosopira, 

Nitrosovibrio, and Nitrosolobus. Nitrobacter is the representative of the NOB (Wrage, 

2001). These nitrifying organisms are chemoautotrophs, and use carbon dioxide as their 

carbon source for growth. Previous research has shown that AOB can produce NO and 

N2O either as a side-product in the catabolic pathway, as known as nitritation, which is 

the very first step towards nitrogen removal of wastewater treatment process. 

Nitritation (see figure below) is the partial oxidation process of ammonium (NH4+) or 

ammonia (NH3) in the wastewater to nitrite (NO2-).  
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Fig. 4 Nitrification: outline of the pathway and enzymes involved (Wrage 2001) 

 

The first intermediate in nitrification is hydroxylamine (NH2OH). The oxidation of NH3 

to NH2OH is catalyzed by ammonia monooxygenase (Wood 1986). Monooxygenases are 

enzymes that incorporate one hydroxyl group into substrates in many metabolic 

pathways. Fig. 4 shows that one of the atoms of O2 is reduced by using two electrons 

produced from the next step, the oxidation of NH2OH to NO2- (Hollocher 1981).  Then, 

the oxidation of NH2OH is mediated by the enzyme hydroxylamine oxidoreductase. In 

biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons 

from one molecule to another. Hydroxylamine oxidoreductase is a potential source of 

nitrous oxide emission (Hooper 1979). Next, NOB further oxidizes NO2- to NO3- in a 

one-step reaction (Wrage 2001). The catalyzer involved in this reaction is 

hydroxylamine oxidoreductase (Nicholas 1960).  

Alternately, AOB produce NO and N2O by denitrification of nitrite with ammonia, 

hydrogen or pyruvate as electron donor (Colliver 2000) (Schmidt 2004). This pathway 
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is called nitrifier denitrification. The denitrifying pathway of AOB would yield N2O only, 

and this route is often linked to low oxygen levels (Poth 1985). Under very low DO 

concentration, nitrifier may not be enriched, but they can at least survive since they 

have anaerobic metabolism (Schmid 2000). Compared to Anammox, they have more 

versatile metabolism. The highest anaerobic ammonium oxidizing activity of AOB is 25 

times lower than that of Anammox (55 nmol NH4+-N (mg protein)-1 min-1) (Kuenen 

2001), but enough to survive (Liu 2009). 

Chemical decomposition of intermediate between NH4+ and NO3-, such as NH2OH and 

NO2- can turn over N2O (Wrage 2001).  Formation of N2O from incomplete oxidation of 

NH2OH was also realized in the early study (Hooper 1979).  Therefore, we can 

nitritation (partial nitrification, from NH4+ to NO2-) could also be a source of N2O 

production.   

 

2.3 Nitrous oxide production from denitrifying organism  

Denitrification is a microbiological process where NO2- and NO3- get reduced to 

dinitrogen gas (N2) through series intermediate nitrogen oxide products such as NO and 

N2O, as they are in the catabolic respiratory pathway. It is primarily carried out by a 

large group of heterotrophic bacteria (such as paracoccus denitrificans and various 

pseudomonads) that use NO2- or NO3- as an alternative electron acceptor when oxygen 

concentration is low (Carlson 1983). 
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Fig. 5 Denitrification: outline of the pathway and enzymes involved (Wrage 2001) 

 

The biological process need reduced carbon source as electron donor, such as external 

organic carbon (e.g., methanol), which is commonly practiced in BNR plants in order to 

achieve complete denitrification. Incomplete denitrification could possible yield N2O 

only. Some previous studies showed that N2O production during denitrification was only 

registered in the absence of dissolved organic matter and the presence of nitrite or low 

DO (Hanaki 1992) (Itokawa 2001). 

 

2.4 Nitrous oxide emission from Anammox process 

Anammox (anaerobic ammonium oxidization) is a recently discovered nitrogen removal 

process. Ammonium is oxidized directly into nitrogen gas using nitrite as an electron 

acceptor with stoichiometric ratio of the Anammox reaction between ammonium, nitrite, 

and nitrate, is 1:1.31:0.22. Most of the ammonium is converted into nitrogen gas, 

bypassing the oxidation process to form nitrate. Due to its autotrophic property, this 

process requires no external carbon source.  Anammox is usually combined with partial 
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nitrification process which partially pre-oxidizes ammonium in the wastewater to nitrite 

by AOB prior to the entry of Anammox reactor. The combined process can provide a 

substantial reduction in energy use, which was estimated to save up to 62.5% of air 

supply. 

Up to date, researchers rarely find Anammox bacteria yield N2O, but it was observed in 

the off-gas produced from both lab scale and full scale Anammox reactors. The potential 

of N2O emission by Anammox is unknown. However, low levels of NO and N2O was 

detected in the off-gas from Anammox enrichment (Strous 1999). It was unclear 

whether it was due to Anammox or by other bacteria in the community.  Research 

conducted by Kartal et al. showed that physically purified Anammox cells (purity higher 

than 99.9%) did not turn over N2O (Kartal 2007). 

In full-scale single-stage partial nitrification-Anammox reactor treating potato 

processing factory wastewater and reject water of a municipal sludge dewatering plant, 

N2O production was 1.2% of the total nitrogen load (Kampschreur 2009). In this study, 

N2O production was only 0.07% of the total recovered nitrogen at steady state. This 

result is much higher than the emission of lab-scale Anammox enrichment reactors. In a 

study by Strous et al., the sequencing batch Anammox reactor showed 0.03-0.06% N2O 

yield of the total nitrogen load (Strous, 1998). In a study by Van de Graaf et al., the 

fluidized bed reactor (FBR) Anammox reactor showed less than 0.1% N2O production of 

the total nitrogen load (van de Graaf 1997). In a study by Wyffels et al., two-stage 

oxygen-limited autotrophic nitrification denitrification process showed less than 0.1% 

N2O turnover of the total nitrogen load (Wyffels 2004). 
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2.5 The goal of this study 

Key factors leading to N2O emission during nitrogen removal from wastewater were 

reported are low dissolved oxygen (DO), presence of nitrite, low chemical oxygen 

demand (COD), as well as short solid retention time. In order to develop a low 

greenhouse gas emission nitrogen removal process, source of N2O need to be further 

investigated and eventually be able to help to find best way to manage N2O emission in 

the operation of wastewater treatment plants. According literature study, nitrifier 

denitrification could be the most probable source of N2O emission in Anammox reactor. 

In order to characterize N2O emission from Anammox granule, a lab-scale UASB reactor 

was developed to investigate key player in the bacteria community that are responsible 

for N2O emission. During the study, Anammox biomass was enriched with synthetic 

wastewater and N2O concentration in the off-gas was monitored alongside. FISH 

technique was used to identify bacteria and to verify hypothesis.   
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CHAPTER 3.  MATERIAL AND METHODS 

 

3.1 Anammox reactor 

An up-flow granular-sludge Anammox reactor with working volume of 3.5 L (height: 

1.10 m, diameter: 0.10 m) has been steadily operated for more than 2 years at low 

nitrogen load. Inactive methanogenic granules from full-scale UASB reactor (1.5 L) and 

Anammox sludge (50 mL) were used to start up in our previously laboratory. The very 

initial substrate concentration for startup was 134 mg NH4+–N/L and 145 mg NO2-–N/L. 

The nitrogen loading rate increased gradually from 140mg/L/d to 480 mg/L/d after 120 

days of inoculation, while achieving average ammonium and nitrite removal efficiencies 

of 95.8 ± 1.1% and 98.8 ± 0.7%, respectively. Previous Real-time PCR showed over 67% 

of the cells in the red Anammox granules were Anammox bacteria (Ni 2010). Prior to 

this study, the reactor had been running for more than 6 months under relatively low 

nitrogen concentration. Ammonia and nitrite concentration were about 46.72 mg 

NH4+–N/L and 61.67 mg NO2-–N/L, respectively. Prior to this study, dissolved oxygen 

in the feed was only controlled by deoxygenating with argon gas before feeding. 

Synthetic wastewater container was not sealed and oxygen might be able to re-dissolve 

in the substrate after deoxygenating. 

 

3.2 Reactor set up and operation 

The configuration of the Anammox reactor is shown in Fig. 6. To maintain proper 

temperature for best Anammox growth, the integrated water jacket was connected to a 
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water bath allowing constant warm water (35˚C) to recirculate through the reactor.  The 

glass funnel on top would collect gas produced from Anammox reaction and allowing 

liquid to flow while maintaining bio-solids in the reactor. The reactor was fitted with an 

influent/recirculation port on the bottom, an effluent and a recirculation port on top, as 

well as a sampling port in the middle section. Gravel with different sizes (2, 5, and 10 

mm) was placed in the lowest portion of the reactor for better wastewater distribution 

and biomass retention.  The reactor was continuously fed with synthetic wastewater by 

peristaltic pumps (MasterFlex, Cole-Parmer Instrument, Vernon Hills, IL, USA). The 

wastewater was stored in a gas tight collapsible LDPE container (Cole-Parmer 

Instrument, Vernon Hills, IL, USA), which avoids substrate from oxygen transmission 

from headspace to maintain a controlled DO concentration. Treated wastewater from 

top of the reactor was recycled back to the influent port at a ratio of 1000% based on the 

influent flow rate, which provides good Anammox granule expansion as well as dilution 

to avoid high-level nitrite inhibition (Strous 1999).  All tubing used was made of black 

butyl rubber to prevent light transmission and air permeability. Off-gas collected from 

the reactor is connected to a gas meter for quantification measurement.  
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Fig. 6 Schematic diagram of experimental setup 

 

The reactor was fed continuously with synthetic wastewater. The hydraulic retention 

time (HRT) was set to 1.5±0.2 days in this study. A pH controller (pH 2000, New 

Brunswick Science, Edison, NJ, USA) was set up to monitor the pH value inside of the 
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reactor and a pH of 7.8 was maintained by automatic feeding of 0.1 mole/L hydrochloric 

acid during the study period.  The day 1 is when reactor achieved 98.6% total nitrogen 

removal rate. 

The experiment was divided into two stages. The first stage was the enrichment of 

Anammox bacteria under strict DO control. During this period, nitrogen load increased 

dramatically once the reactor reaches optimal performance, while N2O concentration in 

the off-gas was measured. In the second stage, nitrogen load was maintained at the 

same level while DO in the feed was altered to observe the correlation of DO and N2O 

production.  

 

3.3 Wastewater 

The trace elements solution I contained (g/L): EDTA 5 and FeSO4 5. Trace elements 

solution II contained (g/L): EDTA 15, ZnSO4•7H2O 0.43, CoCl2•6H2O 0.24, 

MnCl2•4H2O 0.99, CuSO4•5H2O 0.25, NaMoO4•2H2O 0.22, NiCl2•6H2O 0.19, 

NaSeO4•10H2O 0.21 and H3BO4 0.014. Synthetic wastewater contained (g/L): KHCO3 

0.5, KH2PO4 0.0272, MgSO4•7H2O 0.18, CaCl2•2H2O 0.12 and 1 mL trace elements 

solution I and 1 mL trace elements solution II (Imajo 2004) . The amount of ammonia 

and nitrite used were depended on the total nitrogen removal capacity of the running 

reactor and increased over time. Ammonia and nitrite were given in the form of 

(NH4)2SO4 and NaNO2. The wastewater solution was deoxygenated by flushing with 

argon gas (15 minutes, gas delivered through a porous stone sponger) and kept in a gas 

tight collapsible LDPE container before feeding to the reactor. 
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3.4 Analytical Method 

Ammonium concentration was measured by ammonia-selective electrode according to 

Standard Methods (APHA, 1998). Nitrite and nitrate concentration were determined by 

spectrophotometer (DR 3900, Hach Company, Loveland, CO, USA) using 

corresponding powder pillow methods. The pH value is obtained via pH 2000 controller 

(Brunswick Scientific, Enfield, CT, USA) and pH electrode (Thermo Fisher Scientific, 

Waltham, MA, USA). SS and VSS were determined by the weighing method after being 

dried at 103–105˚C and burnt to ash at 550˚C (APHA, 1998). 

The total N2O production includes N2O emission in the gaseous form and the N2O 

dissolved in the liquid. Nitrous oxide in the headspace was measured off-line on a 

Tremetrics 540 gas chromatograph (Porapak Q Column 1m x 2mm i.d., nitrogen gas as 

carrier gas at 25mL/min, electron capture detector, temperature of injector, column, 

and detector were 125, 30, and 300 ˚C, respectively). The off-gas was collected using 

gas-tight syringe. To derive dissolved N2O concentration, the overhead space method 

was used. The concentration of N2O was quantified and corrected to the concentration 

at standard condition for temperature (25°C) and pressure (100 kPa). 

 

3.5 Sample fixation and cryosectioning  

As described previously (Okabea 2011), fresh granular Anammox sample was obtained 

from reactor and fixed in 4% paraformaldehyde solution at temperature of 4˚C for 24 

hours.  Phosphate-buffer saline (1x PBS) was used to wash the sample before it was 

soaked in Tissue-Tek OCT compound overnight that allows OCT compound to infiltrate 
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biofilm and replace some of the water in the biomass.  Cryostat Microtome was used to 

rapid freeze sample at -21˚C, and cryostat sectioning was then performed to obtain 15-

20 µm thin sections.  

 

3.6 Fluorescence in situ Hybridization  

FISH (fluorescence in situ hybridization) is a cytogenetic technique used to identify the 

presence of certain DNA sequences on chromosomes. During hybridization process, 

fluorescence probes on bind to those chromosomes with special sequence. Using 

fluorescence microscopy, matching bacteria (in this study) can be observed and thus this 

technique is used to verify hypotheses bacteria composition in the Anammox granule.   

Several 16S rRNA targeted-oligonucleotide probes (Sigma-Aldrich, St. Louis, MO, USA) 

were used in this study. EUB388 was used to identify all bacteria (Daims 1999). 

AMX820 with TXRD label was used for Candidatus Brocadia Anammoxidan and 

Candidatus Kuenenia Stuttgartiensis that are the common species present in Anammox 

reactor (Schmid 2000). NSE1472 with FLC label and NSV443 with FLC label were used 

for ammonium oxidizing bacteria such as Nitrosomonas europea and Nitrosospira spp., 

respectively (Ohashi 1995). Synthesis scale and formamide are described in Table 1.  

 

Probe Specificity HPLC	  	  Sequence	  (5'	  to	  3') 5'	  Mod Synthesis	  Scale Formamide Reference
µmol %

EUB338 Most	  bacteria GCT	  GCC	  TCC	  CGT	  AGG	  AGT Flc 0.05 35 Daims	  et	  al.,	  1999
AMX820 Candidatus	  brocadia	  anammoxidan TxRd 0.05 35 Schmid	  et	  al.,	  2001

Candidatus	  Kuenenia	  stuttgartiensis
NSE1472 Nitrosomonas	  europea ACC	  CCA	  GTC	  ATG	  ACC	  CCC Flc 0.05 50 Mobarry	  et	  al.,	  1996
NSV443 Nitrosospira	  spp. CCG	  TGA	  CCG	  TTT	  CGT	  TCC	  G Flc 0.05 30 Mobarry	  et	  al.,	  1996
ACI208	   Acidovorax	  spp. CGC	  GCA	  AGG	  CCT	  TGC Flc 0.05 20 Amann	  et	  al.,	  1996

Table	  1	  -‐	  A	  list	  of	  16S	  rRna	  targeted-‐oligonucleotide	  probes	  used	  in	  this	  study

AAA	  ACC	  CCT	  CTA	  CTT	  AGT	  GCC	  
C
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Hybridization procedure 

1) Fixed sample cells were spotted on coated slides and air-dried at 37°C room 

temperature for 5-10 min. 

2) Dried slides were dehydrated with ethanol series 50%, 80% and 99%; 3 min/each, 

and then air dried at room temperature. 

3) Sample were hybridized with oligonucleotide probes at 40°C for 60-90 min with 9 µl 

of hybridization buffer and 1 µl of probes  (probe concentration: 50 ng/µl, or 50,000 

ng/mL). Hybridization stringency was adjusted by adding formamide to 

hybridization buffer. 

4) After hybridization, the slides were washed at 48°C for 5 min in washing buffer.  

5) Washing buffer was removed with distilled water. 

6) Slides were air-dried and mount with anti-fading (Fluoromount) for microscopy 

observation.  

 

3.7 Microscope observation 

Axioplan II compound research microscope was used in this study. Black and white 

camera was selected due to its high clarity and performance. The hybridized biomass 

was illuminated with light of a certain wavelength that excited fluorescence in the 16S 

rRNA targeted-oligonucleotide probe and it became illuminated. Two filters were used 

in this process. One was excitation filter, which purpose was to ensure the correct 

wavelength was applied to the hybridized biomass. The other one was an emission filter, 

which blocked excitation light source before it reached to the camera.  
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CHAPTER 4.  RESULTS AND DISCUSSION 

 

4.1 Enrichment of Anammox bacteria under strict DO control 

The Anammox reactor was first operated effectively under low DO concentration and 

achieved ammonia and nitrite removal efficiency (99%). At HRT of 1.5 day, initial 

influent nitrogen concentration was 43 mg NH4+–N/L and 55 mg NO2-–N/L.  Nitrogen 

concentration increased gradually to 448 mg NH4+–N/L and 587 mg NO2-–N/L after 

170 days of enrichment, while achieving average ammonium and nitrite removal 

efficiencies were 99% and 99%, respectively.   

At the beginning of the study, Anammox granule appeared to be in brownish color.  

After 170 days of enrichment, granule color gradually changed to reddish color (Fig. 7), 

which is the indication of Anammox bacteria became more dominant than before. Off-

gas nitrous oxide measurement campaign was conducted during entire study using 

offline gas chromatography method.   

The initial N2O concentration was over 400 ppm at the beginning of the study. Since 

nitrification could possibly yield N2O and dissolved oxygen inhibits Anammox activity, 

more strict DO control was put into place by replacing original substrate container with 

air-tight LDPE container started on day 10. Substrate was deoxygenated by flushing 

with argon gas before feeding the reactor.  Since then, DO level in the feed was 

maintained at undetectable level. 
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Fig. 7 Granules in UASB Anammox reactor (diameter approximately 3 mm) 
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Fig. 8 The influent, effluent, and nitrous oxide profile in the UASB Anammox reactor 

during the first 170 days of enrichment (The left Y-axis shows the concentration of 

ammonium, nitrite and nitrate. The right Y-axis shows the concentration of nitrous 

oxide produced from reactor.) 

 

4.2 Shock loading’s effect on nitrous oxide turnover 

During 170 days of continuous operation, nitrogen concentration increased gradually to 

448 mg NH4+–N/L and 587 mg NO2-–N/L, while surprisingly, N2O turnover decreased 
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significantly from 402.88 ppm to 4.54 ppm.  Considering FISH observation (describe in 

section 4.5), this dramatic change of N2O emission was may be due to DO’s effect on 

nitrifying bacteria such as AOB.  While decrease of N2O concentration was a significant 

observation, it is noticed that shock loading affected N2O production as well. During 

enrichment process, nitrogen loading was increased when nitrogen removal efficiency 

reach more than 95%.  When shock loading applied, it was observed that N2O turnover 

increase by up to 10 times. 

 

 

Fig. 9 Shock Loading Effect on N2O Emission During Day 24-47 

Fig. 9 shows the nitrogen profile during day 25-47. Nitrogen concentration increased 

from 65 mg NH4+–N/L and 76 mg NO2-–N/L to 108 mg NH4+–N/L 136 mg NO2-–N/L 

on day 34. This shock loading caused disturbance of the steady system. N2O 
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concentration increased from about 7 ppm to peak high 18.2 ppm on day 39.  However, 

N2O concentration gradually decreased to original level after day 39.  

 

 

Fig. 10 Shock Loading Effect on N2O Emission During Day 59-76 

 

Fig. 10 shows the nitrogen profile during day 59-76. Same shock loading took effect on 

N2O emission.  We can see that nitrogen concentration increased from 237 mg NH4+–

N/L and 284 mg NO2-–N/L to 293 mg NH4+–N/L 333 mg NO2-–N/L on the day 67. N2O 

concentration increased from about 3 ppm to peak high 9.7 ppm on day 69.  However, 

N2O concentration gradually decreased to original level after day 69.   
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Fig. 11 Shock Loading Effect on N2O Emission During Day 72-92 

 

Similarly, during day 72-92, shock loading took greater effect on N2O turnover by 10 

folds (Fig. 11).  On day 78, nitrogen concentration increased from 298 mg NH4+–N/L 

and 367 mg NO2-–N/L to 366 mg NH4+–N/L 460 mg NO2-–N/L.  On the same day, 

nitrous oxide concentration increased significantly from about 0.7 ppm to 8.17 ppm.  

From above three cases we can see that shock loading brought disturbance to steady 

ecosystem, causing the increase of nitrous oxide turnover rate.  It is also observed that 

Anammox reactor soon get used to new substrate concentration, reaching new steady 

state, where nitrous oxide concentration dropped to lower level.     
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4.3 Dissolved oxygen’s effect on nitrous oxide emission 

It is worth mentioning that the lab-scale USAB reactor was originally inoculated with 

Anammox sludge and inactive methanogenic granular sludge. The Anammox bacteria 

purity (percentage of Anammox cells in the bacteria community) in the seed sludge was 

less than 1%. After 170 days of continuous enrichment, it’s outstanding performance on 

ammonia nitrogen and nitrite nitrogen removal provide us strong signal that 

enrichment process was successful, not to mention granule’s color change from brown 

to red. It is reasonable to lead us to believe that the percentage of Anammox bacteria in 

the granule increased considerably to handle more nitrogen stress. However, we can 

certainly assume that there must be some other bacteria co-exist with Anammox 

bacteria simply because it is not a pure-culture environment. For example, nitrifier such 

as ammonia oxidizing bacteria (AOB) can continue to survive under low DO and low 

COD condition, where AOB undergo nitrifier denitrification and obtain energy source to 

survive. (Schmid 2000) Nitrous oxide is a major product of nitrifier denitrification. In 

order to prove this hypothesis, the second study about DO’s influence on nitrous oxide 

emission was carried out. Increase DO concentration will activate AOB to perform 

nitrification. Since nitrous oxide is an important intermediate and byproduct, increase 

of nitrous oxide production can be an indication of the existence of AOB and its activity. 

After 170 days of enrichment period, substrate concentration was kept at the same level 

to feed the reactor for another 47 days.  During this period, DO concentration in the feed 

was adjusted to different levels and turbulence of nitrous oxide turnover was observed 

(F1g. 12).  
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Fig. 12 Dissolved Oxygen Effect on N2O Emission  

 

On day 5, dissolved oxygen was introduced to substrate at level of 2 mg/L.  New 

substrate was prepared every day to avoid DO level drop caused by possible bacteria 

activity inside the LDPE container before feeding the Anammox reactor. On day 6, gas 

chromatography showed slight off-gas nitrous oxide increase. In the next 6 days, nitrous 

oxide concentration kept increasing to 3.5 ppm. When compared with previous strict 

anaerobic condition, which nitrous oxide concentration was about 0.2 ppm, peak 

nitrous oxide concentration under 2 mg/L DO was 15 times more than before. Increase 

of effluent ammonia-nitrogen concentration was also observed on day 12. It may be 

caused by DO toxicity to Anammox bacteria. In order to keep reactor’s good 

performance on nitrogen removal, reactor was flushed with argon gas on day 13, and 

substrate was prepared with zero DO. In the next few days, ammonia removal efficiency 
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didn’t pick up immediately, since recovery from DO toxicity usually takes a while. 

However, we observed decrease of nitrous oxide concentration in the off-gas. DO’s effect 

on reactor’s nitrous oxide emission was obvious and led to believe that AOB activity was 

activated when DO level was raised in the feed. Nitrification took place and therefore 

producing nitrous oxide as a byproduct.  

On day 29, ammonia concentration in the effluent decreased to 4.54 mg NH4+–N/L, a 

good ammonia nitrogen removal efficiency of 98.8% was observed, which indicate 

Anammox reactor was recovered from DO inhibition. A smaller amount of DO was then 

introduced to the feed at 1 mg/L to confirm nitrification reaction on day 36. Just as 

expected, again, nitrous oxide concentration gradually increased from o.5 ppm to 1.3 

ppm on day 37. Since smaller dosage of DO was utilized, DO toxicity didn’t occur. On 

day 39, new substrate was prepared without dissolved oxygen, and decrease of nitrous 

oxide concentration was observed afterwards.  

The above evidence indicates the possibility of Anammox bacteria co-existed with 

nitrifier. To further prove our hypothesis, fluorescence in situ hybridization technique 

was performed to identify Anammox and AOB in the granular sludge.  

 

4.4 Using FISH and advanced microscopy technique to study Anammox 

granule composition 

On day 274, Anammox granule sample was obtained from reactor and Cryostat 

Microtome was used to rapid freeze sample at -21˚C, and cryostat sectioning was then 

performed to obtain 15-20 µm thin sections. AMX820 with TXRD label, NSV443 with 
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FLC label and NSE1472 with FLC label was used in hybridization procedure.  DIC, FICT, 

TRITC filter were applied to camera lens to obtain image of hybridized bacteria. 

Microscope with bright field mode was used to obtain image of granule’s cross-section 

image and layered structure is presented in Fig. 13.   

 

 

Fig. 13 Cross-section structure of Anammox granule (DIC filter) 

 

The granule showed in the Fig. 13 has a diameter of 3 mm and appeared to be in red 

color. The internal structure of granule consists of different layers as seen in the figure, 

which is the indication of possible co-existing bacteria community.  In the center of the 
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granule, a hollow structure was observed – it is believed formed from Anammox gas 

production.  

 

 

Fig. 14 Anammox bacteria (red) in cross-section (TRITC filter) 

 

Fig. 14 shows Anammox bacteria in the granule respond to AMX820 probe.  As seen in 

the picture, Anammox bacteria were present throughout the entire granule, but more 

concentrated in the inner part of granule next to the hollow area. With further zoom of, 

image obtained (Fig. 15) shows Anammox bacteria in the center on the granule.  
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Fig. 15 Anammox bacteria located in the center part of cross-section (TRITC filter) 

 

Fig. 16 and Fig. 17 show FISH image using NSV443 and NSE1472 probe that target AOB 

bacteria with FLC filter. As we can see from the image, AOB do exist in the Anammox 

granule. Although the system had undergone strict DO control, AOB survived under 

anaerobic condition. The majority of AOB appeared to be found on the surface layer of 

granule, where oxygen is more readily available than anywhere else. This finding is in 

accordance to previous paper by Okabe, published in 2011. In his study, Anammox 

bacteria were present throughout the granule, whereas ammonium-oxidizing bacteria 

(AOB) were restricted to only the granule surface. However, Okabe’s reactor set-up is 

Sharon+Anammox process, where the leftover oxygen from Sharon process can enter 

the following Anammox reactor. In our case, Anammox reactor is set up under strict 
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oxygen control, meaning no oxygen should enter the reactor. It is quite surprising that 

AOB can still survive under this condition.   

 

 

Fig. 16 Ammonium oxidizing bacteria (AOB) in the cross-section of Anammox granule 

(FLC filter) 

 

According to previous studies, AOB undergoes a different pathway called nitrifier 

denitrification under low DO and organic carbon condition where nitrous oxide is the 

intermediate of denitrification process. Again, physically purified Anammox bacteria 

(purity more than 99.9%) do not yield nitrous oxide. (Kartal 2007) It is worth 

mentioning how dramatic nitrous oxide production decreased since oxygen control was 
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put in place. The lack of dissolved oxygen caused the halt of nitrification in the reactor - 

a process that produces nitrous oxide as an intermediate side product. The decline of 

DO forced AOB shifting to nitrifier denitrification metabolism. Due to very little carbon 

content was provided from the synthetic wastewater, nitrifier denitrification was the 

only way AOB to gain energy from and to survive.  Nitrous oxide concentration was low, 

accounting for only 0.07% of nitrogen removal rate. However, it was an important 

pathway to keep them survives.   

 

 

Fig. 17 Ammonium oxidizing bacteria (AOB) in the cross-section of Anammox granule 

(FLC filter) 
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In the later part of study, DO was given to the reactor in small dose, and nitrifier 

corresponded it with increased nitrous oxide production. AOB on the surface of the 

granule shifted from nitrifier denitrification metabolism to nitrification once oxygen 

became available. From this evidence we can conclude that nitrifier are rather flexible 

bacteria and have strong capability to survive under different scenarios, and they are the 

reason why nitrous oxide emission can be detected from granular Anammox reactor. 

 

4.5 Stoichiometry of the Anammox process 

NH4+ + 1.32 NO2- + 0.066 HCO3- + 0.13H+ è 1.02 N2 + 0.256 NO3-   

        + 0.066 CH2O0.5N0.15 + 2.03 H2O              (1) 

According to the eq. 1, the theoretical ratio of removed NH4+-N: NO2--N: produced NO3-

-N is 1: 1.32: 0.256. In this study, at steady state, the ratio was 1: 1.21: 0.19. It was very 

close to theoretical ratio, but slightly off. By calculating NH4+-N: NO2--N ratio in the 

feeding substrate, error of HACH 3900 spectrophotometer was realized because the 

NH4+-N: NO2--N ratio was 1:1.18 instead of 1: 1.21. That been said, nitrite was consumed 

more than theoretical value. In terms of nitrate production, the ratio showed that less 

than theoretical amount of nitrate was detected from the effluent of the reactor. 

Considering FISH result, which proved AOB’s existence, the variance of the ratio can be 

understood. When the reactor was under anaerobic condition, AOB shifted to nitrifier 

denitrification pathway, which consumed nitrite from feeding substrate and nitrate 

produced Anammox process. This is a direct evidence of AOB activity inside the reactor.  
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CHAPTER 5.  CONCLUSION 

 

Greenhouse gas emission has been paid more attention in the past decade. Greenhouse 

emission from anthropological activities has in fact, affected our environment and we 

have to pay the price. Lately, more attention has been put on nitrous oxide emission, 

which is a greenhouse gas that’s 300 times more powerful compared to carbon dioxide 

with long lifetime. In today’s world, there is the need to manage nitrous oxide emission 

and promote minimal nitrous oxide emission. Sewage treatment, which involved 

nitrogen removal from wastewater, is a big player in nitrous oxide emission from 

anthropological activities.  

There is a need to develop more sustainable nitrogen removal process to treat 

wastewater that has minimum impact on environment. It has become clear that more 

stringent nutrient removal policy will be in place in the near future. With its substantial 

energy saving and ability to handle high nitrogen stress, Anammox technology is a great 

candidate that will fully benefit our environment and society. However, there aren’t 

enough research has been done to investigate its nitrous oxide emission. Published 

works showed mixed result on this issue and that’s why there was the need to carry out 

this research.  

In this study, a lab-scale one reactor Anammox UASB reactor was developed to 

investigate nitrous oxide emission. The average emission of N2O was 0.07 % of 

recovered nitrogen. The source of N2O emission from Anammox granule was believed to 

come from AOB. When reactor was under strict anaerobic condition, AOB could survive 
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by shifting to nitrifier denitrification metabolism to obtain energy. The last experiment 

carried out by using FISH technique proved AOB’s existence. The majority of AOB were 

located on the surface of Anammox granule. The general trend showed that the amount 

of N2O emitted from the reactor is correlated to nitrogen load. The higher nitrogen 

concentration in the feed, the lower N2O emission was observed. This is due to the 

percentage of AOB in the granule decreased while Anammox bacteria were enriched 

when the reactor was put under strict anaerobic condition. Surprisingly, shocking 

loading showed effect on N2O emission. When shock loading was applied, N2O 

concentration increased significantly. The cause of this phenomenon was unclear, but it 

should somehow relate to the disturbance brought by shock loading to the steady eco-

system. Last, this study showed N2O emission responded to DO concentration in the 

feed.  When DO was present, N2O emission increase significantly.  Since AOB existed in 

the granule, nitrification by AOB was believed to be the cause of this phenomenon.  

Based on all experiment results gathered from this study (such as shock-loading test, 

DO test, FISH, etc.), the nitrous oxide emission from Anammox reactor is most likely 

from nitrifier denitrification. Although N2O can be observed from reactor, with strict DO 

control and avoiding shock loading, Anammox reactor’s N2O emission can be controlled 

at extremely low level. In this study, the average emission of N2O was only 0.07 % of 

recovered nitrogen. With its outstanding capability for nitrogen removal and extremely 

low N2O emission, Anammox was once again proved to be a “green” wastewater nutrient 

removal technology. It is foreseeable that with more stringent nutrient regulation 

putting into place, Anammox is a promising technology for future generation 

wastewater treatment plants.  
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